AD-A110 830 SYRACUSE UNIV NY SCHOOL OF COMPUTER A'D INFORMATION =—=£TC F/6 9/2
PROVING PRO.RAN CORRECTNESS. VOLUME V.
NOV 81 J C REYNOLDS 3060!'77-:-0!35
UNCLASSIFIED RADC=TR=80~=379=-VOL =8

l : l

ﬂ

“m 1.0 &M ja
=5z
o

= je
22 s e

MICROCOPY RESOLUTION TEST CHART

(0 TANGARDS T &

NATIONAL RURE AL

LEVEY/

RADC-TR-80-379, Vol V (of five)

- Final Technical Report
) November 1981
oo
QD
2 PROVING PROGRAM CORRECTNESS
o
P
<T Syracuse University
=< ¥
John C. Reynolds
1
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNI.IMIYE;]
oTIC
s TLECTE RS
& Fra i 1Es2
o
' ROME AIR DEVELOPMENT CENTER
‘ Air Force Systems Command
%’ Griffiss Air Force Base, New York 1344
<S 82 02 11076

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTI§
it will be releasable to the general public, including foreign natioms.

RADC-TR-80-379, Vol V (of five) has been reviewed and is approved for
publication,

APPROVED: . (,Z;m,,%/d%w«? 2

CLEMENT D. FALZARANO
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE commnnn;}»»&/ﬂ)%-4_/

JOHN P. HUSS
Acting Chief, Plans Office

1f your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organizationm,
please notify RADC. (ISIS) Griffiss AFB NY 13441. This will assist us in
maintaéning a current mailing list.

Do nof, return copies of thia report unless contractual obligations or notices
on a specific document requires that it be returned,

A
g

%
)

UNCLASSIFIED

SECURMITY CLASSIFICATION OF THIS PAGE (When Dace Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEPORE COMPLETING FORM
[T REPORY NUMBER f?ﬁ 2. GOVY ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
RADC-TR-80-379, Vol V (of five) | JP 4 JICHIC
4. TITLE (and Subtitie) S TYPE OF REPORY & PERMOO COVERED
Final Technical Report
PROVING PROGRAM CORRECTNESS 1 Oct 77 - 30 Sep 80
6. PERFORMING OXG. REPORT NUMBER
N/A
7. AUTNOR(S) B 8. CONTRACT OR GRANT NUMBER(s)
John C. Reynolds F30602-77-C-0235
9. PERFORMING ORGANIZATION NAME AND ADODRESS 10. PROGRAM ELEMENT PROJECT, TASK
R AREA & WORK UNIT NUMBERS
Syracuse University £2702F
School of Computer & Information Science 5811903
Syracuse NY 13210 d 0
11. CONTROLLING OFFICE NAME AND AODRESS 12. REPORT DATE
Rome Air Development Center (ISIS) November 1981
Griffiss AFB NY 13441 "} NUMBER oF PAcES

14. MONITORING AGENCY NAME & ADORESS(if dilfetent from Controlling Office) 1S. SECURITY CLASS. (of this report)

Same UNCLASSIFIED

1Sa. DECL ASSIFICATION/ DOWNGRADING

SCHEDUL
N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Clement D. Falzarano (CO)

19. KEY WORO§ (Continue on reverse side i{ necessary and fdent’ T A number)
Programming Systems 3., “tinulation
Programming Languages Scheer g Algorithm
Programming Grammars Logic Programming

roving Programs Correct

}Computer Modeling

0. ABSTRACT (Continue on reverse side if necessary and Identify by block number)
The "Language Studies" contract is divided into four project areas, all of

which are directed to the problems of effectively, reliably and efficiently
using modern computers in a wide range of applications.

Three of the projects deal with methods of communicating with computers. —{
Task 1. Very High Level Programming Systems (P.I.: J.A. Robinson). This
group is working towards combining the features developed to support work

in the area of artificial intelligence and those used in general program

DD , %%, 1473 eoimion oF 1 nov 63 1s oesOLETE

IFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dere Entered)

T RN T e A

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAG!{"ﬁ_g' Dete Entered)

development into a new conceptual framework gyat can be understood and
used by a large community of users. Task 2. JProving Program Correctness
(P.I.: J.C. Reynolds). This group is working towards programming language
designs which increase the probability that specification errors will be
detected by the compiler or interpreter and to provide the language
facilities so that users will more nearly be able to prove that programs
perform as they are specified than is currently possible. Task 3.
Grammars of Programming (P.I.: E.F. Storm). This group 1s working towar*s
the development of methods which will allow users to communicate with
computer programs in terms more normal to their every day communication
forms. Task 4. Systems Studies (P.I.: R.G. Sargent). This group is
working towards developing more sophisticated and efficient models of
computer systems which can predict system performance when given particul
parameter values. The current efforts concern models of transaction
processing systé s (TPS).

Aogession FoT
“NTIS GRARI
pTIC TAB

Unannouncei
Justificstion,_",,_

. a

RY -
\ Distrlbution/l_ o
\ —;;ailahility Codes

" ;21) 0L/ 0T

- i1
‘prst | Special

creyY
WNSPECTED

2

UNCLASSIFIED

SECURITY CLASSIFICATION OF Yu'® PAGE/When Date Entered)

b ol

i Preface

H
;
i
I
i
b
b
£
;

This report describes efforts completed in the Language
Studies project at Syracuse University under RADC contract
F30602-77-C-0235. The work covers the period October 1, 1977
through September 30, 1980.

The report is produced in five volumes to facilitate single

volume distribution.
Volume 1. Report from the Very High Level Programming Systems
task. Report title is "Logic Programming in Lisp". n

Volunme 2. Report from the Systems Studies task. Report

R S e S St

title is "Multiple Finite Queueing Model with Fixed

Priority Scheduling”. |
Volume 3. Report from the Systems Studies task. Report title

is "An Algorithmic Solution for a Queueing Model

of a Computer System with Interactive and Batch Jobs.
Volume 4. Report from the Grammars of Programming task. Re-

port title is "Integrated Parallel Processes: The

Elements of Meaning in Language".

T

Volume 5. Report from the Proving Program Correctness task.

Report title is 'Proving Program Correctness"

iii

The main goal of our research over the last three years has been the
development of a programming language with the basic character of Algol 60,
but without the major deficiencies of this language.

Of course, Algol 60 had a pivotal influence on language theory and
design when it was first introduced nearly twenty years ago. However, the
long-term result of this influence haslbeen languages that are quite
different than Algol 60, and which overcome its deficiencies at the expense
of introducing new, quite different limitations.

On the one hand, Algol 60 inspired the development of semantic models,
particularly by Strachey and Landin, which in turn led to the development
of languages such as ISWIM, PAL, GEDANKEN, and, in a somewhat different line

of development, Algol 68. All of these languages are "higher level" than

Algol 60; in particular, they require a heap (garbage-collectable store)
for their implementation, and make it difficult to determine whether a
particular data item is stored in a stack or a heap.

On the other hand, the machine implementation of Algol 60 led to the
design of languages that avoided various inherently inefficient features
of that language. At the same time, Hoare's development of axiomatic
language definitions has encouraged the abandonment of certain features,
such as procedural parameters and call by name, that are difficult to treat

axiomatically. This line of development has lead to languages such as

PASCAL, EUCLID, MESA, and ADA, which are all "lower level" than Algol 60.

o

ORTRTEETRE TN T R T T

-2 -

Our own goal has been to improve and extend Algol 60 without
changing its basic character. In particular, we want to retain both the
use of stack storage allocation and the power of the Algol procedure
mechanism,

A first step in this direction has been the development of an
idealization of Algol that is described in the first part of Appendix A.

In this language, the type structure has been refined to permit the complete
syntactic detection of procedure parameter mismatches, lambda expressions
and fixed-point operators of all types have been introduced, and a wide
variety of language features have been described as abbreviations for more
basic structures. (In Landin's phrase, they have been reduced to '"syntactic
sugar".)

The main shortcoming of this language, as of Algol 60 itself, is the -
phenomenon of interference, which includes both variable aliasing and various
kinds of procedural side effects. To deal with this phenomenon, we have
explored two quite different approaches. The first, called the syntactic
control of interference, is to restrict the language so as to make potential
interference syntactically detectable. The second, which is embodied in
specification logic, is to regard noninterference as a relation between pairs
of language phrases that must be proved.

In the syntactic control of interference, described in Appendix A,
the language is restricted so that distinct identifiers always denote
noninterfering entities, while interfering entities must be named by
qualifications of the same identifier. This approach leads to certain
syntactic difficulties: the natural abstract syntax is ambiguous, and

syntactic correctness is violated by certain beta reductions.

e o "
m s e NIV T 55 FPA e teen e

—y

-3 -

These difficulties were an initial motivation for the development of a
generalization of many-sorted algebras, called category-sorted algebras,
which is described in Appendix B. In their most obvious application, these
algebras are a language design tool for controlling the interaction between
type conversions and generic operators. The underlying idea is to permit
an abstract syntax to be ambiguous while insuring that this ambiguity does
not produce an ambiguity of meaning.

Specification logic is a new approach to proving the correctness of
programs written in an Algol-like language. 1Its central novelty is to
regard specifications such as Hoare's {P} S {(Q} as predicates about
environments (in the sense of Strachey and Landin). By introducing new
forms of specifications it is possible to formulate universal specifications
that are true in all environments, and to give rules for the inference of
such universal specifications. This logical system goes beyond such approaches

as Hoare's axiomatic semantics, Dijkstra's weakest preconditions, and Pratt's

dynamic logic in its ability to treat interference phenomena, call by name,
and statemert parameters. Moreover, by introducing lambda expressions and
beta reduction, it is possible to use simpler and more abstract inference
rules than in other logics that treat procedures.

The semantics of specifications, and rules for their inference are
described in Appendix C.

In addition to the above developments, which are related to the design
of an Algol-like language, we have also investigated a variety of concepts,
laws, and notations for making precise yet intelligible assertions about

arrays. This work is based upon Hoare's idea that an array is a variable-like

D . B A

R

T TR W e

e S N S - - U ‘
bt ki PWSIFTNGESIRIINEFFSW S

-4 -

entity whose value is a function on an interval of integers. Interval and
partition diagrams are introduced to make assertions about intervals without

recourse to inequalities. A variety of functional concepts, such as 1

.

restriction, images, pointwise-extended relations, ordering, and rearrangement,
are used to minimize quantifiers in assertions about array values.

Our early work in this area is described in Appendix D. More recently,
we have made further progress by generalizing the concept of shift equivalence
to that of realignment, introducing a kind of abstract concatenation based
upon the disjoint union, and using preimages and related ccncepts. This work

is described in Appendix E.

APPENDIX A

SYNTACTIC CONTROL OF INTERFERENCE

Jown C. Reynolds
School of Computer and Information Science
Syracuse Univereity

ABSTRACT In programming languages which parmit both assignment and procedurss, distinct identifiers
can represent data structures vhich share storage or procedures with interfering side effects. In
addition to being a direct source of programming errors, this phenomenon, which we cal]l interference
can impact type structure snd parallelisa. We show how to eliminate these difficulties by impusing
syntactic restrictions, without prohibiting the kind of constructive interference which occurs with
higher-order procedures or SIMULA clssses. The basic ides is to prohibit interference between
identifiers, but to permit iaterference among components of collections named by single fdentifiers.

The Probles

1t has long been known that a variety of
anomalies can arise wvhen a programming language
combines assignment with s sufficiently powerful
procedure mechanism. The simplest and best-
understood case is aliasing or sharing between
variables, but there are also subtler phenomena of
the kind known vaguely as "interfering eide
‘effects”,

In this paper we will show that thess snomalies
are instances of a general phenomsnon wihich ve call
interference. We will argue that it is vitsl to
constrain s language so that interference is
syntactically detectable, and we vill suggest
principles for this constraiat.

Between simple variables, the only form of
laterference is alissing or sharing. Consider, for
example, the factorial-computing program:

procedure fact(n, f); integer n, f;
begin integer k;
k :»0; f = 1;
while k ¥ n do
begin k := k + 1; f := k x f end
end .

suppose n and f are called by name as in Algol, or
by reference as in FORTRAN, and consider the effect
of ® call such as fact{z, 2), tn which doth actual
paramcters are, the same. Then the formal parameters
n and f will be aliases, i.e., they will finterfere
in the sense that assigning to either one will
sffect the value of the other. As a consequence,
the assignment f := 1 will obliterste the value of
n so that fact(z, z) wvill not behave correctly.

In this case the problem can de solved by
changing n to a local variable which is infcialized
to the value of the input paramseter: this le

tantamount to calling n by value. But while this
solution is adequate for simple variables, it can
becowe impractical for srraye. For example, the
procedure

procedure transpose(X, Y); real array X, Y;
for 1 := 1 unttl 50 do

for § :=] until 350 do

——

Y(1, 1) = X(§, 1)

vill malfunction for a call such as transpose(2Z, 2)
which causes X and Y to be aliases. But changing
X to 8 local variable only solves this probiem at
the expense of gross inefficiency in both time and
space. Certainly, this inefficiency should not be
imposed upor calls which do not produce interfer-
ence. On the other hand, in-place transposition {s
best done by a completely different algoritha.
This suggests that it {s reasonable to permit
procedures such as transpose, but to prohibit calls
of such procedures with interfering paramsters.
Although these difffculties date back to Algol
and FORTRAN, wore recent languages have {ntroduced
nev features which exacerbate the problem of
interference. One such feature is the union of
data types. Suppuse x 18 a varisble whose value
can range over the union of the disjoint data types
integer and character. Then the language must
provide some construct for branching on whether
the current value of x i an integer ~r a charac-
ter, and thereatter treating x as one type or the
other. For example, cvne might write

unfoncase x of (lnteger S; charactee: S') ,

whete % may be used as an identifier of tvpe
integer in § and as an fdentifier of type character
fn S'. However, consider
unioncase x uf
(integer: (y := "A"; n := x ¢ 1);
character: noaction) .

It 1s evideat thet aliasing between x and y can
cause & type error in the expression x + 1. Thus,
in the presence of & union mechaniem, interferance
can destroy type security. This problem occurs
with variant recorde in PASCAL [1]), end {s only
avoided in Algol 68 {2] at the expense of copying
union values.

The incroduction of parallelism also causes
serious difficulties. Hoare (J,4] and Brinch-
Haneen (3] have srgued convincingly that intellf-
gible programming raquires all interactions
between parallel processes to be mediasted by some
mechaniem such as & critical region or monitor.

As a consequance, in the absence of any critical
regions or monitor calls, the parallel execution
of two statements, written S TI §,, can only be
permitted wvhean S, and s2 do &ot interfers with one
another., For cxilplo.

Rimx+l]||yi=yn2

wvould not be permissible when x and y were asliases.

In this paper, we will not coneider interacting
parallel processes, but we will permit the parallel
construce S, || S, vhen 1t is syntactically evident
that S, and”S, do not interfere. Although this kind
of det*rlln.ti parallelism is inadequate for practi-
cal concurrent programming, it is suffictient to make
the consequences of interfereunce espacially vivid.
For example, when x and y are aliases, the adove
statement bacomes equivalent to

w2+l]| s:im2x2

whose meaning, if any, i{s indeterminate, machine-
dependent, and useless.

These examples demonstrate the desirability of
constraining a language so that variable aliasing
is syntactically detectable. Indeed, several
authors have suggested constraints which would
eliminate aliasing cowpletely {6,7].

Hovever, aliasing is only the simplest case of
the more general phenomenon of interference, which
can occur between s variety of program phrases. We
have alresdy spoken of two statements interfering
when one can perform any action which affects the
other. Similarly, two procedures interfere when
one can perform a global action which has a global
effect upon the other.

Interference raises the same problems as
variable aliasing. For example, P(3) || Q(4) 1s
only meaningful 1f the procedures P and Q do not
interfere. Thus the case for syntactic detection
extends from sliasing to interference in general.
However, the complete prohibition of interference
would be untenably restrictive since, unlike
variables, interfering expressions, statements, and
procedures can have usefully different meanings.

Both the usefulness and the dangers of inter-
ference between procedures arise vhen procedures
are used to encapsulate data representations. As
an exawple, consider a finite Jdirected graph vhose
nodes are labelled by small fntegers. Such a graph
night be represented by giving, for each node n, a
liaked 1ist of its immediate successors n;,..., n.:

nodelist ftem link

"
n n
2

\

)

[}

n o |€

This representation is used by the procedure

procedure itersucc(n,p); integer n; procedure p;

begin integer k;
k :* nodelist(n);

while k ¥ 0 do
begin p(item(k)); k := link(k) end
end

which causes the procedure p to be applied to each
immediate successor of the node n.

If the graph is ever to change, then something
- probably a procedure such as "addedge" or
"deleteedge" - must interfere with itersucc by
assigning to the global arrays nodelist, ftem. and
link. On the other hand, the .orrect operation of
itersucc requires that the procedure parameter p
must not assign to these arrays, i.e., that p must
not interfere with iftersucc. Indeed, if jtersucc
involved parallelism, e.g. if the body of the while
statement were

begin iuteger m;
m := {tem(k);
begin p(m) || & := link(k) end

end .

then noninterference between p and ftersucc would
he required for meaningfulness rather than just
correctness.

0f course, the need for luterfering procedures
would vanish if the graph representation were a
parameter to the procedures which use {t. Bul this
would preclude an important style of prograrming
-~ epitomized by SIMULA 67 [8] - in which data
abstraction im realized by usiig collecttons of
procedures which fnterfere via hidden global
varfables.

In summary, these examples motivate the basic
goal of this paper: to design a programming lan-
guage in which interference is pussibie yet
syntactically detectable. To the suthor's ¥aow-
ledge, the (nly current language which tries to
meet this goal 1s Euclid {7]. The approach used
tn Euclid §s quite different than that given here.
and apparently precludes procedural pirameters and
call-by-name.

(Tl-IlI-l!!l!ll'lllllll!llllll'l'.!lll'l'lll‘IllllllIlllllllllIllllIIllll.lllIlllllllllllllillllllllql'

h 1.1 sic

roach

Before proceeding further, we must delineate
the idea of interference more precisely. By a
phrase we mean & varisble, expression, statement,
or procedure denotation. In the first three cases,
ve speak of exercising the phrase P, meaning:
either assigning or evaluating P if 1t {s a
variable, evaluating P 4{f it {s an expression, or
executing P 4f {t 1s a statement.

For phrases P and Q, we write P # Q to
indicate that it is syntactically detectable that
P and Q do not interfere. More precisely, # is a
syntactically decidable symmetric relation between
phrases such that:

(1) 1If neither P nor Q denotes a procedure,
then P # Q inplies that, for all ways of
exercising P and Q, the exercise of P will
have no effect on the exercise of Q (and
vice-versa). Thus the meaning of exercising
P and Q in parallel is well-defined and
determinate,

(2) 1f P denotes a procedure, A,, ... , AL
are syntactically appropriate lclull para-
meters, P # Q, and A} # Q, ... , A 1 Q,
then P(A,, ... , A) # Q. (Thue P # Q
captures ' the idea that P cannot interfere
with Q via global varisbles.)

It should be emphasize’ that these rules have a
fatl-safe character: P # Q implies that P and Q
cannot interfere, but not the converse. Indeed,
the rules are vacuously satisfied by defining #
to be universally false, and there is a probably
endless sequence of satisfactory definitions which
come ever closer to the semantic relation of non-
interference at the expense of increasing complexity.
Where to etop is ultimately a question of taste:
P # Q should mean that P and Q obviously do not
interfere.

Our own approach is based upon three
principles:

(1) 1f 1 #J for all identifiers 1 ociur-
ring free 1n P and J occurring free in Q,

then P ¢ Q.

In effect, all "channels” of interference must be
named by identifiers. For the language discussed in
this paper, this principle is trivial, since the
only such channels are variables. 1In a richer
language, the principle would imply, for example,
that all 1/0 devices must be named by fdentifiers.

(11) 1f 1 and J are distinct identifiers,
then I # J.

This 1s the most controversial of our principles,
since it enforces a particular convention for
distinguishing between interfering and noninter-
fering phrases. Interfering procedures (and othu1
entities) are still permissible, but they must
occur within a collectlion which is named by a
single identifier. {An exdmple of such a
collection {s & typical element in a SIMULA [3)
class. Indeed, the fdea of using such collections
was suggested by the SIMI'LA class mechanism,
although we will permit collections which do not
belong to any class.)

A-3

(I111) Certain types of phrases, such as

expreasions, and procedures which do not

assign to global vartiables, are satd to be

gg:ulvo. When P and Q are both passive,
Q.

Passive phrases perform no assignments or other
actions which could cause interference. Thus they
cannot interfere with one another or even with
themselves, although an sctive phrase and a passive
phrase can interfere.

An Illustrative Language

To 1llustrate the above principles we will
first introduce an Algol-based language which,
although 1t satisfies Principle (1), permits
uncontrolled Interference. We will then impose
Principle (11) to make interference syntactically
detectable. Finally, we will explore the
conscquences of Principle (III).

Unlike Algol, the illustrative language is
completely typed, so that reduction (i.e. appli-
cation of the copy rule) cannot introduce syntax
errors. It provides lamhda expressions and f{xed-
point operators for all program types, an a named
Cartesian product, which is needed for the
collections discussed under Principle Il. Procedure
de.larations, multiple-parameter procedures, and
«lasses are treated as syntactic sugar, i.e., as
abbreviations which are defined in terms of more
basic linguistic constructs.

Arrays, call-by-value, jumps and labels,
uifons of types, references, {nput-cutput, and
critical regions are not considered.

We distinguish between dat. types, which are
the types of values of simple varialles, and
program types, which are the types which car be
declared for {dentifiers and specified fur
parameters. The only data types are iluteger, real,
and Bonlean, as in Algol, but there are an infinite
number of program types. Specifically, the set of
program types i{s the smaliest set such that:

(1) 1f ¢ {s a data type, then & var
(meaning varlable) and 6 exp (meaning
cexpression) are program types.

(12) sta (meaning statement) i{s a program
type.

(13) If w and w' are program types, then
W *w' {8 a progrum type.

(T64) If w ts a funcrion from a finfte set of
identifiers into prugram types, ther NM(w) s
A program type.

A formal parameter specified 1o have type

A ovar can be uywed on efther stde of assfznment
ctatements, whitie a formel parameter spe-itied to
Have type ¢ exp can only be used as an expres .ion,
he program type w * w' des.ribes procedures whese
shuple parameter has type w oand whone call has type
L' Far example, the Alpol procedures

procedure plin) g integer ngon e 1

Peal procedure pO(x) g real xi pdlote oxo0oxg

winrld have types Integer var = sta and real exp =+
1e1l exp respectively.

The progream type l(w) fs s Cartestan product
in which components are indexed by Lduntifiers
vather than by consecutive integers. secifically,
R(w) describes collections in which each_{ tn the
domain of v indexes a component of type w(i). The
fundtion w will always be written as a lfst of pairs
of the form argument:value. Thue, for exanple,
f(inc: sta, val: integer exp) describes collectfone
in which inc indexes a statement and val indexes an
integer expresaion. A typical phrase of thie type
might be (inc: n :* n + 1; val: n x n »

To simplify the description of syntax we will
ignore aspects of concrete representation such as
parenthesation, and we will adopt the fiction that
each identifier has s fived progrea type (except
vhen used as a component index), vhen in fact the
program type of an identiffer will be specified in
the format Iiw vhen the tdentiffer ts bound.

We write <w 1d> and <¢> to denote the seta of
identifieres and phrases with progras type w. Than
the syntax of the illustrative language 1s given by
the following production schemata, in which & ranges
over all data types, w, w', w3, ... w range over
program types, and 11. e s 1n. range over
identifiers:

<4 exp> 1:= <4 var>
<integer exp> ;:v 0
| <integer exp> + <integer exp>
<Boolean exp> ::= true
| <integer exp> = <integer exp>
| <Boolean exp> & <Boolean exp>

(and siailarly for other constants and
operations on data types)

<oLa> :iw <4 var> := <§ exp>
<sta> ::= noaction
| <sta> ; <ata>
| while <Boolean exp> do <ste>
<sta> ::® new <4 var id> in <sta>
<w> e <y 1d>
w e w' e) <y 1d>, ">
<w'> 1w <w v @' (<)
<n(£l:ul, cee s ln:un)> L)

n

<uk> siw <ﬂ(11:u1, ces o 1n:un)> . 1k

<w> ::= If <Boolean exp> then <w> else <uw>

(11:<u1>. vee l“:‘u >)

<> 1w l(<u - W)

Although s formal semantic specification is
heyond the scope of this paper, the meaning of our
language can be explicated by various reduction
rules, For lambda expressions, we have the usual
rule of beta-reduction:

0L P @ = .
where the right side denotes the result of
substituting Q for the free occurrences of I in P,
after changing bound identifiers i{n P to avoid
conflicts with free identifiers in Q. Note that
this rule implies call by name: 1f P does not
contain 8 free vccurrence of 1 then (Al, P)(Q)

A-4

reduces Lo ¢ even (f Q 18 nontermizailag or causes
side effects. For collection Sipressions, ve have
(tl: Pl' ey l“: ’n). ‘k - P. .

For example,
(inc: n := n+), val: nen). tne @ ¢ ;o ol ,

Again, there 18 a flavor of call-by-name, stace the
above reduction vould still hold 1f axn were
replaced by a fnonterminating sxpression. The
fixed-point operator ¥ can aleo be elucidated by a
reduction rule:

Y(r) = fyee)) .
In addition to lambda expressions, the only

other binding wechanign fn our language is the
decleration of new variables. The statement

integer
nev 1: |real in S hae the same meaning as the
Boolean] integer
Algol statement begin | real I; S end.
Boolean

By themselves, lasbda expressions and new
variable declarations are an austere vocabulary
for varfable binding. But they are suffictient to
permit other binding mcchanisma to be defined as
abbreviations. This approach 1s vital for the
language conatraints which will be given below,
since {t insures that all binding mechanisms will
be affected uniformly.

Multiple-parameter procedures are treated
following Curry [9}):

P(Al. oo An) H P(Al) e (An)

A(ll. ey ln). XI‘.

and definitional forms, including procedure
declarations are treated following Landin [10}:

P = (1. P)(Q)

-4
i

tes Aln. B

-
1
~
—
L]
<
-

Jet rec { »Q in P = (A1, PO, Q) .

(llowever, unlike Landin, we are using call-by-name.)
We will omit type specifications from let and

let rec expressions when the type of [(s apparent
from Q.

As shown in the Appendix, classes {i{n a
slightly move limited sense than {n SIMULA) can
also be defined as abbreviations.

As an example, the declaration of the
procedure fact shown at the beginning of this paper,
along with a statement S in the scope of this
declaration, would be vritten as:

let fact = A(n :integer exp, f: {nteger var).
T new k: integar in
b'——(k e 0 f im0
while X ¢ n do (k := kel; € := k=f))
ins .
After eliminating abbreviations, this becomes

(Mact: {nteger exp + ({nteger var < sta). §)
(in: i{nteger exp. Af: {nteger var.
new k: integer in
(k = 0; € 1= Y
while k # n do (k := kel; £ ;= k*f))) .

DI . VO, T3)

-

Ul A W ...

o

Countrollgng Interference

The 1llustrative language already satisfies
Principle 1. 1f wve can constrain it to sstisfy
Principle 11 as well, then P # Q will hold when P
snd @ have no free identifiers in common. By
sssuming the most pessimistic definition of #
compatible with this result (and postponing the
consequances of Principle II1 until the next
section), we get

P#Qief F(P) NFWQ) = (),

where F(P) denotes the set of identifiers which
occur free in P,

To establish Principle 1I, we must consider
esch vay of binding an identifier. A new variable
declaration causss no problems, since new variables
are guaranteed to bs independent of all previously
declared entities. But a lambda expression can
cause trouble, since its formal parameter will
interfere with 1ts global identifiers if it is ever
applied to an actual parameter which interferes
vith the global identifiers, or equivalently, with
the procadure ftself. To avoid this interference,
ve will rastrict the call P(A) of a procedure by
imposing the requirement P # A.

The following informal argument shows why this
restriction works. Consider s beta-reduction
(AL, P)(Q)'PII‘Q. Within P there may be a pair of

identifiers which are syntactically required co
eatisfy the #-relationship, and therefore must be
distinct. If a0, it fs essential that the subs-
titution 1 - Q preserve the f#-relatfonship. No
problem occurs if neither identifier is the foraal
paraseter 1. On the other hand, if one identifier
1o 1, then the other distinct identifier must be
giobal, Thus the #-relation will be preserved 1f
K # Q holds for all global identifiers K, {f.e.,
for all identifiers occurring free in Al. P. This
1s equivalent to (Al. P) # Q.

More formally, one can show that, with the
restriction on procedure calls:

w'> 1iw <w » w'>(<w>) vhen <w <+ w'> M <,

syntactic correctness is preserved by beta
reduction (and also by reduction of collection
expressions), and continues to be preserved when
other productions restricted by # are added, e.g.,

<sta> i <sta;> i <stay> when <ltnl> ’ <atap> .

The restriction P # A on P(A) also affects the
language constructs which sre defined as abbrevia-
tions. For let 1 = Q in P 3 (A1, PI(Q), and for
let rec 1 = Q in P = OL. P)(Y(Al. Q)), we see that,
:;Eept for 1, no free fdenti{ier of Q can occur
free in P. Thus, although one can declare a
procedure or a collection of procedures which use
global identifiers (the free identifiers of Q),
these globals are masked from occurring in the
scope P of the declarativn, where they would
interfere with the identifier 1.

For multi-parsmeter procedures, P(A,, ~ou An)
2 P(A,) ... (A) feplies the teilrlction‘ L Al'
PA2 Ay, T PGAD L (o) # Ay which Are
equivalent to requiring F # A, for each parameter
and A1 [Aj for cach pair of Jdistinct parameters.

A-5

For example, consider the following procedure
for a "repeat” ststement:

let repeat = A(s: sts, b: Boolean exp).
(s; while T b dos) .

In any useful call repeat(A;, A7), the statement A
will interfere with the Boolean expression A,.
Although this 1s permitted in the uncoaottatlcd
1llustrative language, as in Algol, it is prohibited
by the restriction A, # A,. Instead, one sust group
the interfering para*eter into & collection:

1

let repeat = ix: N{s: eta, b: Bnolean exp).

(x.8; while 7 x.b do x.0) ,

and use calls of the form repeat((.:Al' I’:Az Y).

This example is characteristic of Principle II.
Although interfering parameters are permitted, they
require a somewhat cumbersome notation. In compen-
sation, it is immediately clear to the reader of a
procedure body when interfersnce between parameters
{s possible.

Passive Phrases

In making interference syntactically detect-
able, we have been unnecessarily restrictive. For
example, we have forbidden parallel constructs such
as

x:=n|]ly:=n

or
let twice =)s: sta. (s; 8) in
(twice (x := xt1) || tvice(y := yx2)) .

Morcover, the right side of the reduction rule
Y(f) = ((¥(f)) violates the requirement f¢X(£),
giving a clear sign that there {s a problem vith
recursion,

In the first two cases, we have fatled to take
{nto account that the expression n and the procedure
twice arc passive: They do no assignment (to global
variables {n the case of procedures), and therefore
do nnt interfere with themselves. Similarly, when
f 1s passive, f # Y(f) holds, and the reduction
rule for Y(f) bacomes valid. This legitimizes the
recursive definition of procedures which do not
assign to global varfables.

(Recursive procedures which assign to global
variables are a more difficult problem, Within the
body of such a procedure, the global variables and
the procedure itself are interfering entities, and
must therefore be represented by components of a
collection named by a single identifier. Thie
s{tuation probably doesn't pose any fundamental
difficulties, but we have not pursued it.)

The following treatment of passivity is more
tentative than the previous development.
Fxpressions {n our language are always passive,
since they never cause assigoment to free variables.
Procedures may be act{ve or passive, {njependently
of their argument and result types. Thus we must
dfstinguish the program type w *p w' desrribing
passive prucedures {rom the program type v < w'
deseribing (possibly) active procedures.

More formally, we sugment the definftion of
program types with

(T5) 1f w and w' are program types, then
@ +p w' 18 a program type.

and ve define passive program types to be the
ssallest set of program types such that

(P1) ¢ exp is passive.
(P2) w +p »' is passive,

(P3) 1f W(1) s passive for all 1 in the
domain of w, then A(J) is passive.

Next, for any phrasse r, ve define A(r) to de
the set of identifiers which have at least one free
occurrence in r which is outside of any subphrsse
of paseive typs. Note that, since identifier

ccure are th lves subphreses, A(r) never
contains identifiers of passive type, and since r
is a subphrase of itself, A(r) is empty wvhen r has
passive type.

Then we relax the definition of P # Q to permit
P and Q to contain fres occutrences of the same
identifier, providing every such occurrence is
within a passive subphrase. We define:

PIQIAM) NFQ =} aF(P) NAQ) = {) .

Finally, we modify the abstract syntax. We
define a passive procedure to be one in which no
global identifier has an active occurrence:

<y »

P

w'> im A <w {d>. <w'>

when A(<w'>) - (<w 14>} = {} .

Passive procedures can occur in any context which
permite active procedures:

<w -Ou'> 1w gy ‘P u') .
but only passive procedures can be operands of the
fixed-point operator:

<w> e Y(<w p W) .

Some Unresolved Queatfons

Our abstract syntax {s ambiguous, in the sense
that specifying the type of a phrase does not
slways specify a unique type for each subphrase.
For example, in the original {llustrative language,
the subphrase if p then x else y might be either
a variable or an expression in contexts such as

AL p
(a: 4f p then x else y, b: 3).b

Sisilarly, the introduction of passive procedures
permits tha subphrase le: sta. (s; ») to have
either type sta < sta or sta *p sta {n the context

(Aa: ota. (8; 8))(x := x¢1) .

Although these ambiguities could probably be
eliminated, our intuition is to retain them, while
insieting that they must not lead to ambiguous
meanings. Indeed, it may be fruitful to extend
this attitude to a wider variety of implicitc
conversions.

C W e em— ——

e albklntiuiade

In normal usage, a procedure call will be
active {f and only Lf etther the procedure itself
or its parameter are active. Although other cases
are syntactically permissible they seem to have
only trivial instances. Thus it might be desirable
to limit the program types of procedures to the
cases:
0+,08 o “» a' 86+0 a-+a'
where 0 and 0' are passive types and o and a' are
nonpassive types.

The most eerious problem with our treatment of
passivity is our insbility tc retain the basic
property that beta-reduction preserves syntactic
correctness. Consider, for example, the reduction

(Ap: mixed. (x := p.a {| y :» p.a))
((a: n*l, b: n :=0))
(a: nél, b: n :« 0) .a
iy t= ta: ntl, b: n := 0) .8
* xi=ntl ||y e nel

where "mixed"” stands for the progran type
N{a: integer exp, b: sta). Although the first and
last lines are perfectly reasonadble, the inter-
mediate line is rather dubfous, since it contains
assignments to the same variable n within two
statements to be executed in paraliel. Neverthe-
less, our definition of # still permits the inter-
wediate lire, on the grounds that assignments
within passive phrases cannot be executed.
However, 1f we sccept

x = {a: n*l, b:n = 0).a

#f y:= {a:n+l, b:n :»0) .a,

then it is hard to deny

{n 7'0”!))‘3
* 0).a

el by

n+¢l, bi n

. X e (a:
f yi= (a;

But this permits the ceduction

{n:e0 || s).a)

(A3: sta. x := {a: n+l, b:

(y := (a: nt) b:n :» 0). a)
= x :* (a: n#l, b:
n =0 Il v := Ca: n+l, b: n := 0 V)
) .a)

» x iv n+l

llere the intermediate step, in which the under-
lined statement 1s clearly {llegal, is prohibited
by vur syntax,

This kind of prodblem {a compounded by the
poseibility of collection-returning procedures.

For {nstauce, in the above cxamples, one might have
8i)ly(n¢l, n := 0), where silly has type

integer exp <+ (sta <+ mixed), in place of the
collection (a: n¢l, b: n :» 0),

A possible though unesthetic solutfon tu these
problems might be to permit {llegal phrases {n
contexte wvhere passivity guarantees nonexecution.

A more hopeful possibility would be to alter the
definition of substitution to avoid the creation
of 1llegal phrases in such contexts.

Divectione for PFurther Work

Ssyond dealing vith the above questions, it ia
obvicusly essential to extend these ideas to other
language mechenisms, particulsrly srrays.

In addition, the interaction detween these
1deas and the axtiomatization of program correctneas
needs to be explored. We suspect that many rules
of inference might be simplified by using a logic
which tmposes f-preservation upon substitutions.

A somevhat tangential aspect of this work is
the distinction between data and prograsm types,
which obviously has implications for user-defined
types. (Note the sbasence of this distinction in
Algol 68 [2).) 1In lews Algol-like languages, data
types might have as much structure as programs
types, and user definitions might be needed for
both "types" of type. Indeed, there may be grounde
for introducing wore than two "types”" of type.

Finally, these ideas may have implications for
the optimization of call-by-name, perhaps to an
extent vhich will overcome the aura of hopeless
inefficiency which surrounds this concept. For
exsmple, when an expression is a single parameter
to a procedurs, as opposed to 8 component of &
collection which is a parameter, then ite repeated
evaluation within the procedure must yield the same
value (although nontermination is still possible).
This suggeste o possible application of the fdea of
“lazy evalusciorn® [11, 12},

APPENDIX

Classes as Syntactic Sugar

In a previous paper, we have argued that
clasees are a less powerful data sbstraction
oechanism than either higher~order procedures or
user-defined types [14]. The grester generality of
higher-order procedures permits the definftion of
classes (in the reference-free sense of Hosre [13)
rather than SIMULA itself) as abbreviations in our
i{llustrative language. In fact, the basic tdea
works in Algol 60, although the absence there of
lambda expressions and named collections of
procedures makes its application cumbersome.

We conaider s class declaration with scope S
of the form:

cless C(DECL; INIT; IlzPl, P
which tefines C to be a class with component names
1,, eees 1 . Here DECL fa a list of declarations
o} variablls and procedures which will be private
to a class element, INIT is an {nitialfzation
statement to be executed when each class element ts
created, and each P, is the procedure named by I, ,
in which the private variables may occur as globals,

Within the scope S, one may declare X to be a
nev element of class C by writing the statement

V1P) an s ()

nevelement X: C in §°' . (93]

Then within the statement S' one mav write X. Iy to
denote the component Py of the class element X.

To express these notations in terms of
procedures, suppose P , ... , P have types Wi
wy respectively, Then we defin (1) to be an
sbbreviation for:

A-7

let € = Ab: A(I i,y v0v , I tw) = ata.
1771 n'n
(DECL; INIT; b(‘II:PI' cre s LR YY)
ins,

vhere b is an {dentifier not occurring in the
original clasa declaration, and where DECL must be
expressed in terms of new and let declarations.
Then we define (2) to be an abbreviattion for:

c(ax: ““1‘”1' ETIRE U s') .

As an example, where for simplicity P1 and P2
are parameterless procedures:

class counter(integer n; n := O;
inc: n := n+l, val: n) in
<« fnewelement k: counter in

oo (k.ine; x := k,val)
1s an abbreviation for

let counter
Ab: N(inc: sta, val: integer exp) + sta.
new n: integer in
(n :® 0; b({inc: n := n+l, val: n)))
in
+.s counterfik: N(inc: sta, val: integer exp).
ces (kofne; x :® k,val)) ,

vhich eventually reduces to

nw n: integer in (n := C;

co (0w Nl x 1= n))

In the process of reduction, tdentifiers will be
renamed to protect the privacy of n.

The only effect of our interference-controlling
constraints is that € must be a passive procedure,
i.e., INIT and P,, ... , Py cannot assign to any
variahles which are more global than those declared
by DECL. This iLnsures that distinct class elcments
will not interfere with one another. Otherwise,

{f C {8 not passive, then 5' in the definition of
(2. cannot contain calls of C, so that multiple
class elements cannot coexist.

ACKNOWLEDGEMENTS

Most of this research was done during a delightful
and stimulating sahbbat{cal at the (niversity of
tEdinburgh. Specia) thanks are due to Rod Burstall
and Robin Milner for their en-ouragement and
helpful suggestions and to the members of IFIP
work{ng group 2.3, ecspecially Tony Hoare, for
establishing the viewpcint about programming which
underifes thily work.

Cg——

REFERENCES

(1] uirch, M. The Programming Language PASCAL.
Acta Informstica }, (1971), pp. 33-63.

[2) van Wijngaarden, A. (ed.), Matlloux, 8. J.,
Peck, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>